C.U.SHAH UNIVERSITY Summer Examination-2019

Subject Name: Classical Mechanics

Subject Code: 5SC04CLM1		Branch: M.Sc. (Mathematics)	
Semester: 4	Date:22/04/2019	Time: 02:30 To 05:30	Marks: 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Q-1 Attempt the Following questions (07) Define: Linear momentum. 1 a. What is virtual displacement? 1 b. Define : Kinetic energy c. 1 For a mechanical system of 3^n particle if there are 3^{n+1} constraints then d. 1 find degree of freedom. Define: Constraint. 1 e. f. Write the difference between Lagrangian and Hamiltonian of mechanical 1 system. What do you mean by ignorable coordinates? 1 g. Q-2 Attempt all questions (14) What is degree of freedom? Explain the types of constraints. 8 a. State and prove D'Alembert's principle. 6 b. OR Q-2 **Attempt all questions** (14) State and prove conservation theorem of linear momentum. 4 a. State and prove Lagrange's equation of motion. b. 10 Q-3 Attempt all questions (14)Show that the bead sliding on a uniform rotating wire follows the 7 a. exponential curve. 7 Show that Lagrange's equation of motion is invariant under co-ordinate b. transformation.

OR

Q-3	a.	Attempt all questions Prove that the Lagrange's equation of motion for Atwood's machine is $\ddot{v} = \frac{m_1 - m_2}{m_1 - m_2} a$	(14) 7
	b.	$x = \frac{1}{m_1 + m_2}g$. State and prove conservation theorem of angular momentum.	7
Q-4		SECTION – II Attempt the Following	(07)
	a. b. c. d. e. f.	What do you mean by homogenous space? What is dual transformation? Write the Lagrange's equation of motion for simple pendulum. Define: Phase space. What can you say about H, if L does not depends on time explicitly? If the system is of 100 particle in 3D with holonomic constraints $y_5 + y_6 = 0, y_1 + y_{100} = 2, y_{11} + y_{22} = 5, y_i + y_j = 3, 20 \le i, j \le 30$.then calculate degree of freedom.	1 1 1 1 2
Q-5	a.	Attempt all questions State Hamilton's principle of motion and hence prove it from Lagrange's equation of motion.	(14) 8
	b.	Write any three properties of Hamiltonian function also justify it.	6
Q-5	a. b.	Attempt all questions State and prove Hamilton's equation of motion. Find Hamiltonian and Hamilton's equation of motion for simple pendulum. Find Hamiltonian for the following Lagrangian. Hamilton's equation of motion	(14) 7 7
		$L = a\dot{x}^{2} + b\dot{y}yx + c\dot{x}\dot{y} + fy^{2}\dot{x}\dot{z} + g\dot{y} - k\sqrt{x^{2} + y^{2}}.$	
Q-6	a.	Attempt all questions State and prove the necessary and sufficient condition for canonical transformation.	(14) 7
	b.	Show that the transformation $Q = \log \frac{p + p}{p}$ and $P = q \cot p$ is canonical transformation and hence find generating function.	7
0.6		OR Attempt all Questions	
Q-0	a. b.	State and prove the matrix form of Hamiltonian equation of motion. State and prove Fermat's Postulate in optics.	7 7

State and prove Fermat's Postulate in optics. b.

